1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association.
Circulation 2016;133:e38-360.
2. Kirmani JF, Alkawi A, Panezai S, Gizzi M. Advances in thrombolytics for treatment of acute ischemic stroke.
Neurology 2012;79:S119-125.
3. The National Institute of Neurological Disorders and Stroke rtPA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke.
N Engl J Med 1995;333:1581-1587.
4. Adibhatla RM, Hatcher JF. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies.
CNS Neurol Disord Drug Targets 2008;7:243-253.
5. Gravanis I, Tsirka SE. Tissue-type plasminogen activator as a therapeutic target in stroke.
Expert Opin Ther Targets 2008;12:159-170.
6. Guerrero WR, Grotta JC. Defining intravenous recombinant tissue plasminogen activator failure.
Stroke 2013;44:819-821.
7. Kim DE, Kim JY, Sun IC, Schellingerhout D, Lee SK, Ahn CH, et al. Hyperacute direct thrombus imaging using computed tomography and gold nanoparticles.
Ann Neurol 2013;73:617-625.
8. Anderson CS, Robinson T, Lindley RI, Arima H, Lavados PM, Lee TH, et al. Low-Dose versus Standard-Dose Intravenous Alteplase in Acute Ischemic Stroke.
N Engl J Med 2016;374:2313-2323.
9. Jaberi A, Lum C, Stefanski P, Thornhill R, Iancu D, Petrcich W, et al. Computed tomography angiography intraluminal filling defect is predictive of internal carotid artery free-floating thrombus.
Neuroradiology 2014;56:15-23.
10. Kim JY, Ryu JH, Schellingerhout D, Sun IC, Lee SK, Jeon S, et al. Direct Imaging of Cerebral Thromboemboli Using Computed Tomography and Fibrin-targeted Gold Nanoparticles.
Theranostics 2015;5:1098-1114.
11. Lee DK, Nahrendorf M, Schellingerhout D, Kim DE. Will molecular optical imaging have clinically important roles in stroke management, and how?
J Clin Neurol 2010;6:10-18.
12. Kim DE, Kim JY, Nahrendorf M, Lee SK, Ryu JH, Kim K, et al. Direct thrombus imaging as a means to control the variability of mouse embolic infarct models: the role of optical molecular imaging.
Stroke 2011;42:3566-3573.
13. Kramer MC, Rittersma SZ, de Winter RJ, Ladich ER, Fowler DR, Liang YH, et al. Relationship of thrombus healing to underlying plaque morphology in sudden coronary death.
J Am Coll Cardiol 2010;55:122-132.
14. Young L, Ockelford P, Milne D, Rolfe-Vyson V, McKelvie S, Harper P. Post-treatment residual thrombus increases the risk of recurrent deep vein thrombosis and mortality.
J Thromb Haemost 2006;4:1919-1924.
15. Kearon C. Natural history of venous thromboembolism.
Circulation 2003;107:I22-30.
16. Ahn SG, Choi HH, Lee JH, Lee JW, Youn YJ, Yoo SY, et al. The impact of initial and residual thrombus burden on the no-reflow phenomenon in patients with ST-segment elevation myocardial infarction.
Coron Artery Dis 2015;26:245-253.
17. Chueh JY, Kuhn AL, Puri AS, Wilson SD, Wakhloo AK, Gounis MJ. Reduction in distal emboli with proximal flow control during mechanical thrombectomy: a quantitative in vitro study.
Stroke 2013;44:1396-1401.
18. Gobin YP, Starkman S, Duckwiler GR, Grobelny T, Kidwell CS, Jahan R, et al. MERCI 1: a phase 1 study of Mechanical Embolus Removal in Cerebral Ischemia.
Stroke 2004;35:2848-2854.
19. Applegate RJ. Optimal therapy for ST-segment elevation myocardial infarction: the role of residual thrombus.
J Am Coll Cardiol 2011;57:1874-1876.
20. Overoye-Chan K, Koerner S, Looby RJ, Kolodziej AF, Zech SG, Deng Q, et al. EP-2104R: a fibrin-specific gadolinium-Based MRI contrast agent for detection of thrombus.
J Am Chem Soc 2008;130:6025-6039.
21. Uppal R, Ay I, Dai G, Kim YR, Sorensen AG, Caravan P. Molecular MRI of intracranial thrombus in a rat ischemic stroke model.
Stroke 2010;41:1271-1277.
22. Walter J, Debra AH, Asad S, Jeanine MW, Mamdouh B. An overview of hemostasis and thrombosis. Textbook of Interventional Cardiovascular Pharmacology: Chapter 1 An overview of hemostasis and thrombosis. CRC Press 2007;1:29.
23. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly.
N Engl J Med 1997;336:1276-1282.
24. Crouse JR, Craven TE, Hagaman AP, Bond MG. Association of coronary disease with segment-specific intimal-medial thickening of the extracranial carotid artery.
Circulation 1995;92:1141-1147.
25. Virmani R, Burke AP, Kolodgie FD, Farb A. Vulnerable plaque: the pathology of unstable coronary lesions.
J Interv Cardiol 2002;15:439-446.
26. JM UK-I, Young V, Gillard JH. Carotid-artery imaging in the diagnosis and management of patients at risk of stroke.
Lancet Neurol 2009;8:569-580.
27. Nighoghossian N, Derex L, Douek P. The vulnerable carotid artery plaque: current imaging methods and new perspectives.
Stroke 2005;36:2764-2772.
28. Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization.
J Magn Reson Imaging 2002;15:62-67.
29. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries.
N Engl J Med 1987;316:1371-1375.
30. Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques.
Circulation 2001;104:1280-1285.
31. Lindner JR, Song J, Xu F, Klibanov AL, Singbartl K, Ley K, et al. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes.
Circulation 2000;102:2745-2750.
32. Weinberger J, Azhar S, Danisi F, Hayes R, Goldman M. A new noninvasive technique for imaging atherosclerotic plaque in the aortic arch of stroke patients by transcutaneous real-time B-mode ultrasonography: an initial report.
Stroke 1998;29:673-676.
33. Corti R, Osende JI, Fayad ZA, Fallon JT, Fuster V, Mizsei G, et al. In vivo noninvasive detection and age definition of arterial thrombus by MRI.
J Am Coll Cardiol 2002;39:1366-1373.
34. Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging.
Radiology 1991;181:655-660.
35. Song HK, Wright AC, Wolf RL, Wehrli FW. Multislice double inversion pulse sequence for efficient black-blood MRI.
Magn Reson Med 2002;47:616-620.
36. Johnstone MT, Botnar RM, Perez AS, Stewart R, Quist WC, Hamilton JA, et al. In vivo magnetic resonance imaging of experimental thrombosis in a rabbit model.
Arterioscler Thromb Vasc Biol 2001;21:1556-1560.
37. Botnar RM, Perez AS, Witte S, Wiethoff AJ, Laredo J, Hamilton J, et al. In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent.
Circulation 2004;109:2023-2029.
38. Viereck J, Ruberg FL, Qiao Y, Perez AS, Detwiller K, Johnstone M, et al. MRI of atherothrombosis associated with plaque rupture.
Arterioscler Thromb Vasc Biol 2005;25:240-245.
39. Moody AR, Murphy RE, Morgan PS, Martel AL, Delay GS, Allder S, et al. Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia.
Circulation 2003;107:3047-3052.
41. von zur Muhlen C, von Elverfeldt D, Moeller JA, Choudhury RP, Paul D, Hagemeyer CE, et al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis.
Circulation 2008;118:258-267.
42. von Elverfeldt D, Maier A, Duerschmied D, Braig M, Witsch T, Wang X, et al. Dual-contrast molecular imaging allows noninvasive characterization of myocardial ischemia/reperfusion injury after coronary vessel occlusion in mice by magnetic resonance imaging.
Circulation 2014;130:676-687.
44. Kim DE. Principles and Methods of Molecular Imaging in Stroke. In : Caplan LR BJ, Leary MC, Lo EH, Thomas AJ, Yenari M, Zhang JH, editors. Primer on cerebrovascular diseases 2nd ed. San Diego, California, U.S.A.: Elsevier/Academic Press; in press.
46. Aziz K, Berger K, Claycombe K, Huang R, Patel R, Abela GS. Noninvasive detection and localization of vulnerable plaque and arterial thrombosis with computed tomography angiography/positron emission tomography.
Circulation 2008;117:2061-2070.
47. Hara T, Truelove J, Tawakol A, Wojtkiewicz GR, Hucker WJ, MacNabb MH, et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography enables the detection of recurrent same-site deep vein thrombosis by illuminating recently formed, neutrophil-rich thrombus.
Circulation 2014;130:1044-1052.
48. Ciesienski KL, Yang Y, Ay I, Chonde DB, Loving GS, Rietz TA, et al. Fibrin-targeted PET probes for the detection of thrombi.
Mol Pharm 2013;10:1100-1110.
49. Blasi F, Oliveira BL, Rietz TA, Rotile NJ, Day H, Looby RJ, et al. Effect of Chelate Type and Radioisotope on the Imaging Efficacy of 4 Fibrin-Specific PET Probes.
J Nucl Med 2014;55:1157-1163.
50. Blasi F, Oliveira BL, Rietz TA, Rotile NJ, Naha PC, Cormode DP, et al. Multisite Thrombus Imaging and Fibrin Content Estimation With a Single Whole-Body PET Scan in Rats.
Arterioscler Thromb Vasc Biol 2015;35:2114-2121.
51. Jha B, Kothari M. Pearls & oy-sters: hyperdense or pseudohyperdense MCA sign: a Damocles sword?
Neurology 2009;72:e116-117.
52. Liebeskind DS, Sanossian N, Yong WH, Starkman S, Tsang MP, Moya AL, et al. CT and MRI early vessel signs reflect clot composition in acute stroke.
Stroke 2011;42:1237-1243.
53. Aouad P, Hughes A, Valecha N, Gawarikar Y, Ahmad K, O’Neil R, et al. Prevalence, Comorbid Associations and Prognostic Value of the Hyperdense Middle Cerebral Artery Sign.
ISRN Stroke 2013;2013:6.
54. Mamlouk MD, Tsai FY, Drachman D, Stradling D, Hasso AN. Cerebral thromboembolism: value of susceptibility-weighted imaging in the initial diagnosis of acute infarction.
Neuroradiol J 2012;25:45-56.
55. Grover SP, Saha P, Jenkins J, Mukkavilli A, Lyons OT, Patel AS, et al. Quantification of experimental venous thrombus resolution by longitudinal nanogold-enhanced micro-computed tomography.
Thromb Res 2015;136:1285-1290.
56. Kim DE, Kim JY, Lee SK, Ryu JH, Kwon IC, Ahn CH, et al. Combined near-infrared fluorescent imaging and micro-computed tomography for directly visualizing cerebral thromboemboli.
J Vis Exp (in press).
57. Anderson NG, Butler AP, Scott NJ, Cook NJ, Butzer JS, Schleich N, et al. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE.
Eur Radiol 2010;20:2126-2134.
58. Stern ST, McNeil SE. Nanotechnology safety concerns revisited.
Toxicol Sci 2008;101:4-21.
59. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents.
Adv Drug Deliv Rev 2010;62:1064-1079.
60. Sirol M, Fuster V, Badimon JJ, Fallon JT, Moreno PR, Toussaint JF, et al. Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent.
Circulation 2005;112:1594-1600.
61. Klink A, Lancelot E, Ballet S, Vucic E, Fabre JE, Gonzalez W, et al. Magnetic resonance molecular imaging of thrombosis in an arachidonic acid mouse model using an activated platelet targeted probe.
Arterioscler Thromb Vasc Biol 2010;30:403-410.
62. Wen AM, Wang Y, Jiang K, Hsu GC, Gao H, Lee KL, et al. Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging.
J Mater Chem B Mater Biol Med 2015;3:6037-6045.
63. Gale EM, Atanasova IP, Blasi F, Ay I, Caravan P. A Manganese Alternative to Gadolinium for MRI Contrast.
J Am Chem Soc 2015;137:15548-15557.
64. Patel R, Janoudi A, Vedre A, Aziz K, Tamhane U, Rubinstein J, et al. Plaque rupture and thrombosis are reduced by lowering cholesterol levels and crystallization with ezetimibe and are correlated with fluorodeoxyglucose positron emission tomography.
Arterioscler Thromb Vasc Biol 2011;31:2007-2014.
65. Ay I, Blasi F, Rietz TA, Rotile NJ, Kura S, Brownell AL, et al. In vivo molecular imaging of thrombosis and thrombolysis using a fibrin-binding positron emission tomographic probe.
Circ Cardiovasc Imaging 2014;7:697-705.