1. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage.
Lancet 2009;373:1632-1644.
2. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis.
Lancet Neurol 2010;9:167-176.
3. Fogelholm R, Murros K, Rissanen A, Avikainen S. Long term survival after primary intracerebral haemorrhage: a retrospective population based study.
J Neurol Neurosurg Psychiatry 2005;76:1534-1538.
4. Writing Group Members, Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, et al. Heart disease and stroke statistics-2010 update: a report from the American Heart Association.
Circulation 2010;121:e46-e215.
5. Qureshi AI, Suri MF, Nasar A, Kirmani JF, Ezzeddine MA, Divani AA, et al. Changes in cost and outcome among US patients with stroke hospitalized in 1990 to 1991 and those hospitalized in 2000 to 2001.
Stroke 2007;38:2180-2184.
6. Adeoye O, Broderick JP. Advances in the management of intracerebral hemorrhage.
Nat Rev Neurol 2010;6:593-601.
7. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage.
Lancet Neurol 2006;5:53-63.
8. Ariesen MJ, Claus SP, Rinkel GJ, Algra A. Risk factors for intracerebral hemorrhage in the general population: a systematic review.
Stroke 2003;34:2060-2065.
9. Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage: a powerful and easy-touse predictor of 30-day mortality.
Stroke 1993;24:987-993.
10. Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.
Stroke 2015;46:2032-2060.
11. Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema.
Stroke 2013;44:627-634.
12. Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial.
Lancet 2013;382:397-408.
16. Wang J, Doré S. Inflammation after intracerebral hemorrhage.
J Cereb Blood Flow Metab 2007;27:894-908.
17. Babu R, Bagley JH, Di C, Friedman AH, Adamson C. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention.
Neurosurg Focus 2012;32:E8.
18. Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation.
Prog Neurobiol 2014;115:25-44.
19. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage.
Prog Neurobiol 2010;92:463-477.
20. Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury.
Stroke 2011;42:1781-1786.
21. Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets.
Lancet Neurol 2012;11:720-731.
22. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain.
Neuroscience 1990;39:151-170.
23. Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke.
Prog Neurobiol 2016;142:23-44.
24. Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain.
Neuropathol Appl Neurobiol 2013;39:3-18.
25. Salter MW, Beggs S. Sublime microglia: expanding roles for the guardians of the CNS.
Cell 2014;158:15-24.
27. Wake H, Moorhouse AJ, Miyamoto A, Nabekura J. Microglia: actively surveying and shaping neuronal circuit structure and function.
Trends Neurosci 2013;36:209-217.
28. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides.
Nat Neurosci 2006;9:1512-1519.
29. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y(12) receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases.
Glia 2017;65:375-387.
30. Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses.
Annu Rev Immunol 2009;27:119-145.
31. Hidetoshi TS, Makoto T, Inoue K. P2Y receptors in microglia and neuroinflammation.
Wiley Interdiscip Rev Membr Transp Signal 2012;1:493-501.
32. Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage.
Front Cell Neurosci 2014;8:388.
34. Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke.
Int J Mol Sci 2017;18:E2135.
36. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, et al. Microglial and macrophage polarization: new prospects for brain repair.
Nat Rev Neurol 2015;11:56-64.
37. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia.
Stroke 2012;43:3063-3070.
39. Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage.
Mol Neurobiol 2017;54:1874-1886.
40. Eggen BJ, Raj D, Hanisch UK, Boddeke HW. Microglial phenotype and adaptation.
J Neuroimmune Pharmacol 2013;8:807-823.
41. Wu J, Yang S, Xi G, Song S, Fu G, Keep RF, et al. Microglial activation and brain injury after intracerebral hemorrhage.
Acta Neurochir Suppl 2008;105:59-65.
42. Gomez-Nicola D, Perry VH. Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity.
Neuroscientist 2015;21:169-184.
44. da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, et al. The impact of microglial activation on bloodbrain barrier in brain diseases.
Front Cell Neurosci 2014;8:362.
45. Yang S, Chen Y, Deng X, Jiang W, Li B, Fu Z, et al. Hemoglobininduced nitric oxide synthase overexpression and nitric oxide production contribute to blood-brain barrier disruption in the rat.
J Mol Neurosci 2013;51:352-363.
46. Liu DZ, Ander BP, Xu H, Shen Y, Kaur P, Deng W, et al. Bloodbrain barrier breakdown and repair by Src after thrombin-induced injury.
Ann Neurol 2010;67:526-533.
48. Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration.
Immunity 2012;37:249-263.
49. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease.
Nat Rev Immunol 2011;11:775-787.
50. Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system.
Prog Neurobiol 2015;131:65-86.
51. Teng W, Wang L, Xue W, Guan C. Activation of TLR4-mediated NFκB signaling in hemorrhagic brain in rats.
Mediators Inflamm 2009;2009:473276.
53. Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K. Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage.
Ann Neurol 2011;70:646-656.
55. Zhao X, Zhang Y, Strong R, Zhang J, Grotta JC, Aronowski J. Distinct patterns of intracerebral hemorrhage-induced alterations in NF-kappaB subunit, iNOS, and COX-2 expression.
J Neurochem 2007;101:652-663.
56. Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Josserand J, et al. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro.
Brain Behav Immun 2013;32:70-85.
57. Yang J, Ding S, Huang W, Hu J, Huang S, Zhang Y, et al. Interleukin-4 ameliorates the functional recovery of intracerebral hemorrhage through the alternative activation of microglia/macrophage.
Front Neurosci 2016;10:61.
58. Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system.
Glia 2002;40:195-205.
59. Wang G, Wang L, Sun XG, Tang J. Haematoma scavenging in intracerebral haemorrhage: from mechanisms to the clinic.
J Cell Mol Med 2018;22:768-777.
60. Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, et al. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages.
Ann Neurol 2007;61:352-362.
62. Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed.
J Neuroinflammation 2014;11:98.
63. Xia CY, Zhang S, Gao Y, Wang ZZ, Chen NH. Selective modulation of microglia polarization to M2 phenotype for stroke treatment.
Int Immunopharmacol 2015;25:377-382.
64. Filardy AA, Pires DR, Nunes MP, Takiya CM, Freire-de-Lima CG, Ribeiro-Gomes FL, et al. Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages.
J Immunol 2010;185:2044-2050.
65. Subramaniam SR, Federoff HJ. Targeting microglial activation states as a therapeutic avenue in parkinson’s disease.
Front Aging Neurosci 2017;9:176.
66. Liang Z, Wu G, Fan C, Xu J, Jiang S, Yan X, et al. The emerging role of signal transducer and activator of transcription 3 in cerebral ischemic and hemorrhagic stroke.
Prog Neurobiol 2016;137:1-16.
67. Qin H, Yeh WI, De Sarno P, Holdbrooks AT, Liu Y, Muldowney MT, et al. Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation.
Proc Natl Acad Sci U S A 2012;109:5004-5009.
68. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity.
Nat Rev Immunol 2011;11:750-761.
69. Nguyen H, Ramana CV, Bayes J, Stark GR. Roles of phosphatidylinositol 3-kinase in interferon-gamma-dependent phosphorylation of STAT1 on serine 727 and activation of gene expression.
J Biol Chem 2001;276:33361-33368.
70. Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1).
J Biol Chem 2011;286:1786-1794.
71. Sheldon KE, Shandilya H, Kepka-Lenhart D, Poljakovic M, Ghosh A, Morris SM Jr. Shaping the murine macrophage phenotype: IL-4 and cyclic AMP synergistically activate the arginase I promoter.
J Immunol 2013;191:2290-2298.
72. Tsai MC, Chen WJ, Tsai MS, Ching CH, Chuang JI. Melatonin attenuates brain contusion-induced oxidative insult, inactivation of signal transducers and activators of transcription 1, and upregulation of suppressor of cytokine signaling-3 in rats.
J Pineal Res 2011;51:233-245.
73. Qin H, Holdbrooks AT, Liu Y, Reynolds SL, Yanagisawa LL, Benveniste EN. SOCS3 deficiency promotes M1 macrophage polarization and inflammation.
J Immunol 2012;189:3439-3448.
74. Koscsó B, Csóka B, Kókai E, Németh ZH, Pacher P, Virág L, et al. Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages.
J Leukoc Biol 2013;94:1309-1315.
75. Zhao XR, Gonzales N, Aronowski J. Pleiotropic role of PPARγ in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-κB.
CNS Neurosci Ther 2015;21:357-366.
77. Wasserman JK, Zhu X, Schlichter LC. Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment.
Brain Res 2007;1180:140-154.
78. Liddelow S, Barres B. SnapShot: astrocytes in health and disease.
Cell 2015;162:1170-1170.
80. Jha MK, Lee WH, Suk K. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders.
Biochem Pharmacol 2016;103:1-16.
81. Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation.
Neuroscientist 2019;25:227-240.
83. Lively S, Schlichter LC. Age-related comparisons of evolution of the inflammatory response after intracerebral hemorrhage in rats.
Transl Stroke Res 2012;3(Suppl 1):132-146.
84. Tejima E, Zhao BQ, Tsuji K, Rosell A, van Leyen K, Gonzalez RG, et al. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage.
J Cereb Blood Flow Metab 2007;27:460-468.
85. Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage.
Brain 2005;128(Pt 7):1622-1633.
86. Shavit E, Michaelson DM, Chapman J. Anatomical localization of protease-activated receptor-1 and protease-mediated neuroglial crosstalk on peri-synaptic astrocytic endfeet.
J Neurochem 2011;119:460-473.
88. Chiu CD, Yao NW, Guo JH, Shen CC, Lee HT, Chiu YP, et al. Inhibition of astrocytic activity alleviates sequela in acute stages of intracerebral hemorrhage.
Oncotarget 2017;8:94850-94861.
89. Shichita T, Sakaguchi R, Suzuki M, Yoshimura A. Post-ischemic inflammation in the brain.
Front Immunol 2012;3:132.
90. Hendrix S, Nitsch R. The role of T helper cells in neuroprotection and regeneration.
J Neuroimmunol 2007;184:100-112.
91. Kivisäkk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, et al. Human cerebrospinal fluid central memory CD4
+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin.
Proc Natl Acad Sci U S A 2003;100:8389-8394.
92. Arumugam TV, Granger DN, Mattson MP. Stroke and T-cells.
Neuromolecular Med 2005;7:229-242.
93. Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke.
Circulation 2006;113:2105-2112.
94. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, et al. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation.
J Cereb Blood Flow Metab 2007;27:1798-1805.
95. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke.
Nat Med 2009;15:192-199.
96. Zhou K, Zhong Q, Wang YC, Xiong XY, Meng ZY, Zhao T, et al. Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3β/PTEN axis.
J Cereb Blood Flow Metab 2017;37:967-979.
97. Xue M, Del Bigio MR. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats.
J Stroke Cerebrovasc Dis 2003;12:152-159.
98. Loftspring MC, McDole J, Lu A, Clark JF, Johnson AJ. Intracerebral hemorrhage leads to infiltration of several leukocyte populations with concomitant pathophysiological changes.
J Cereb Blood Flow Metab 2009;29:137-143.
99. Guo FQ, Li XJ, Chen LY, Yang H, Dai HY, Wei YS, et al. Study of relationship between inflammatory response and apoptosis in perihematoma region in patients with intracerebral hemorrhage.
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2006;18:290-293.
103. Hwang ES, Szabo SJ, Schwartzberg PL, Glimcher LH. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3.
Science 2005;307:430-433.
104. Lazarevic V, Chen X, Shim JH, Hwang ES, Jang E, Bolm AN, et al. T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt.
Nat Immunol 2011;12:96-104.
105. Walker JA, McKenzie ANJ. T(H)2 cell development and function.
Nat Rev Immunol 2018;18:121-133.
106. Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE. Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion.
J Immunol 2001;166:7276-7281.
108. Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity.
Semin Immunol 2013;25:305-312.
109. Gao L, Lu Q, Huang LJ, Ruan LH, Yang JJ, Huang WL, et al. Transplanted neural stem cells modulate regulatory T, γδ T cells and corresponding cytokines after intracerebral hemorrhage in rats.
Int J Mol Sci 2014;15:4431-4441.
110. Mao LL, Yuan H, Wang WW, Wang YJ, Yang MF, Sun BL, et al. Adoptive regulatory t-cell therapy attenuates perihematomal inflammation in a mouse model of experimental intracerebral hemorrhage.
Cell Mol Neurobiol 2017;37:919-929.
111. Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization.
J Leukoc Biol 2011;89:557-563.
112. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm.
Nat Immunol 2010;11:889-896.
113. Yang Z, Yu A, Liu Y, Shen H, Lin C, Lin L, et al. Regulatory T cells inhibit microglia activation and protect against inflammatory injury in intracerebral hemorrhage.
Int Immunopharmacol 2014;22:522-525.
114. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke.
Stroke 2011;42:2578-2583.
115. Mracsko E, Javidi E, Na SY, Kahn A, Liesz A, Veltkamp R. Leukocyte invasion of the brain after experimental intracerebral hemorrhage in mice.
Stroke 2014;45:2107-2114.
117. Selenko-Gebauer N, Majdic O, Szekeres A, Höfler G, Guthann E, Korthäuer U, et al. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy.
J Immunol 2003;170:3637-3644.
118. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application.
Nat Immunol 2013;14:1212-1218.
119. Ostrand-Rosenberg S, Horn LA, Haile ST. The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity.
J Immunol 2014;193:3835-3841.
120. Dai S, Jia R, Zhang X, Fang Q, Huang L. The PD-1/PD-Ls pathway and autoimmune diseases.
Cell Immunol 2014;290:72-79.
121. Jin HT, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity.
Curr Top Microbiol Immunol 2011;350:17-37.
122. Lee YJ, Moon YH, Hyung KE, Yoo JS, Lee MJ, Lee IH, et al. Macrophage PD-L1 strikes back: PD-1/PD-L1 interaction drives macrophages toward regulatory subsets.
Adv Biosci Biotechnol 2013;4:19-29.
124. Zhao S, Li F, Leak RK, Chen J, Hu X. Regulation of neuroinflammation through programed death-1/programed death ligand signaling in neurological disorders.
Front Cell Neurosci 2014;8:271.
125. Yuan B, Huang S, Gong S, Wang F, Lin L, Su T, et al. Programmed death (PD)-1 attenuates macrophage activation and brain inflammation via regulation of fibrinogen-like protein 2 (Fgl-2) after intracerebral hemorrhage in mice.
Immunol Lett 2016;179:114-121.
126. Han R, Luo J, Shi Y, Yao Y, Hao J. PD-L1 (programmed death ligand 1) protects against experimental intracerebral hemorrhage-induced brain injury.
Stroke 2017;48:2255-2262.
127. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype.
J Neuroinflammation 2017;14:36.
128. Cohen JA, Chun J. Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis.
Ann Neurol 2011;69:759-777.
129. Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis.
Clin Neuropharmacol 2010;33:91-101.
130. Rosen H, Stevens RC, Hanson M, Roberts E, Oldstone MB. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence.
Annu Rev Biochem 2013;82:637-662.
131. Baeyens A, Fang V, Chen C, Schwab SR. Exit strategies: S1P signaling and T cell migration.
Trends Immunol 2015;36:778-787.
132. Garris CS, Blaho VA, Hla T, Han MH. Sphingosine-1-phosphate receptor 1 signalling in T cells: trafficking and beyond.
Immunology 2014;142:347-353.
133. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis.
N Engl J Med 2010;362:387-401.
134. Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial.
Lancet Neurol 2014;13:545-556.
135. Groves A, Kihara Y, Chun J. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy.
J Neurol Sci 2013;328:9-18.
136. Chiba K. FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors.
Pharmacol Ther 2005;108:308-319.
137. Lee CW, Choi JW, Chun J. Neurological S1P signaling as an emerging mechanism of action of oral FTY720 (fingolimod) in multiple sclerosis.
Arch Pharm Res 2010;33:1567-1574.
138. Tham CS, Lin FF, Rao TS, Yu N, Webb M. Microglial activation state and lysophospholipid acid receptor expression.
Int J Dev Neurosci 2003;21:431-443.
139. Okada T, Kajimoto T, Jahangeer S, Nakamura S. Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system.
Cell Signal 2009;21:7-13.
140. Melendez AJ. Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets.
Biochim Biophys Acta 2008;1784:66-75.
141. Nayak D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, Ling EA, et al. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia.
Neuroscience 2010;166:132-144.
142. Noda H, Takeuchi H, Mizuno T, Suzumura A. Fingolimod phosphate promotes the neuroprotective effects of microglia.
J Neuroimmunol 2013;256:13-18.
143. Rothhammer V, Kenison JE, Tjon E, Takenaka MC, de Lima KA, Borucki DM, et al. Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation.
Proc Natl Acad Sci U S A 2017;114:2012-2017.
144. Qin C, Fan WH, Liu Q, Shang K, Murugan M, Wu LJ, et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway.
Stroke 2017;48:3336-3346.
145. Das A, Arifuzzaman S, Kim SH, Lee YS, Jung KH, Chai YG. FTY720 (fingolimod) regulates key target genes essential for inflammation in microglial cells as defined by high-resolution mRNA sequencing.
Neuropharmacology 2017;119:1-14.
146. Sucksdorff M, Rissanen E, Tuisku J, Nuutinen S, Paavilainen T, Rokka J, et al. Evaluation of the effect of fingolimod treatment on microglial activation using serial pet imaging in multiple sclerosis.
J Nucl Med 2017;58:1646-1651.
147. Delbridge MS, Shrestha BM, Raftery AT, El Nahas AM, Haylor JL. Reduction of ischemia-reperfusion injury in the rat kidney by FTY720, a synthetic derivative of sphingosine.
Transplantation 2007;84:187-195.
148. Man K, Ng KT, Lee TK, Lo CM, Sun CK, Li XL, et al. FTY720 attenuates hepatic ischemia-reperfusion injury in normal and cirrhotic livers.
Am J Transplant 2005;5:40-49.
149. Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats.
Stroke 2010;41:368-374.
150. Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia.
Ann Neurol 2011;69:119-129.
151. Fu Y, Zhang N, Ren L, Yan Y, Sun N, Li YJ, et al. Impact of an immune modulator fingolimod on acute ischemic stroke.
Proc Natl Acad Sci U S A 2014;111:18315-18320.
152. Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G, et al. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial.
Circulation 2015;132:1104-1112.
153. Lu L, Barfejani AH, Qin T, Dong Q, Ayata C, Waeber C. Fingolimod exerts neuroprotective effects in a mouse model of intracerebral hemorrhage.
Brain Res 2014;1555:89-96.
154. Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, et al. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage.
Exp Neurol 2013;241:45-55.
155. Sun N, Shen Y, Han W, Shi K, Wood K, Fu Y, et al. Selective sphingosine-1-phosphate receptor 1 modulation attenuates experimental intracerebral hemorrhage.
Stroke 2016;47:1899-1906.
156. Fu Y, Hao J, Zhang N, Ren L, Sun N, Li YJ, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study.
JAMA Neurol 2014;71:1092-1101.
157. Wei Y, Whaley-Connell AT, Chen K, Habibi J, Uptergrove GM, Clark SE, et al. NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat.
Hypertension 2007;50:384-391.
158. Paoletti R, Bolego C, Poli A, Cignarella A. Metabolic syndrome, inflammation and atherosclerosis.
Vasc Health Risk Manag 2006;2:145-152.