1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges.
Lancet Neurol 2010;9:689-701.
2. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications.
Lancet Neurol 2019;18:684-696.
3. Dichgans M, Leys D. Vascular cognitive impairment.
Circ Res 2017;120:573-591.
4. Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International Stroke Incidence Collaboration.
Stroke 1997;28:491-499.
5. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage.
N Engl J Med 2001;344:1450-1460.
6. Debette S, Schilling S, Duperron MG, Larsson SC, Markus HS. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis.
JAMA Neurol 2019;76:81-94.
7. Georgakis MK, Duering M, Wardlaw JM, Dichgans M. WMH and long-term outcomes in ischemic stroke: a systematic review and meta-analysis.
Neurology 2019;92:e1298-e1308.
8. de Laat KF, van Norden AG, Gons RA, van Oudheusden LJ, van Uden IW, Bloem BR, et al. Gait in elderly with cerebral small vessel disease.
Stroke 2010;41:1652-1658.
9. Inzitari D, Pracucci G, Poggesi A, Carlucci G, Barkhof F, Chabriat H, et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort.
BMJ 2009;339:b2477.
10. van Agtmaal MJM, Houben AJHM, Pouwer F, Stehouwer CDA, Schram MT. Association of microvascular dysfunction with late-life depression: a systematic review and meta-analysis.
JAMA Psychiatry 2017;74:729-739.
11. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration.
Lancet Neurol 2013;12:822-838.
12. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study.
J Neurol Neurosurg Psychiatry 2001;70:9-14.
13. Marwick TH, Gillebert TC, Aurigemma G, Chirinos J, Derumeaux G, Galderisi M, et al. Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE).
Eur Heart J Cardiovasc Imaging 2015;16:577-605.
14. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study.
N Engl J Med 1990;322:1561-1566.
15. Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study.
Stroke 1991;22:312-318.
16. Bikkina M, Levy D, Evans JC, Larson MG, Benjamin EJ, Wolf PA, et al. Left ventricular mass and risk of stroke in an elderly cohort. The Framingham Heart Study.
JAMA 1994;272:33-36.
17. O’Neal WT, Almahmoud MF, Qureshi WT, Soliman EZ. Electrocardiographic and Echocardiographic left ventricular hypertrophy in the prediction of stroke in the elderly.
J Stroke Cerebrovasc Dis 2015;24:1991-1997.
18. Bots ML, Nikitin Y, Salonen JT, Elwood PC, Malyutina S, Freire de Concalves A, et al. Left ventricular hypertrophy and risk of fatal and non-fatal stroke. EUROSTROKE: a collaborative study among research centres in Europe.
J Epidemiol Community Health 2002;56 Suppl 1:i8-i13.
19. Georgakis MK, Synetos A, Mihas C, Karalexi MA, Tousoulis D, Seshadri S, et al. Left ventricular hypertrophy in association with cognitive impairment: a systematic review and meta-analysis.
Hypertens Res 2017;40:696-709.
20. Moore EE, Liu D, Pechman KR, Terry JG, Nair S, Cambronero FE, et al. Increased left ventricular mass index is associated with compromised white matter microstructure among older adults.
J Am Heart Assoc 2018;7:e009041.
21. Johansen MC, Shah AM, Lirette ST, Griswold M, Mosley TH, Solomon SD, et al. Associations of echocardiography markers and vascular brain lesions: the ARIC Study.
J Am Heart Assoc 2018;7:e008992.
22. Nakanishi K, Jin Z, Homma S, Elkind MS, Rundek T, Tugcu A, et al. Left ventricular mass-geometry and silent cerebrovascular disease: the cardiovascular abnormalities and brain lesions (CABL) study.
Am Heart J 2017;185:85-92.
23. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.
JAMA 2000;283:2008-2012.
24. Soliman EZ, Howard G, Prineas RJ, McClure LA, Howard VJ. Calculating Cornell voltage from nonstandard chest electrode recording site in the Reasons for Geographic And Racial Differences in Stroke study.
J Electrocardiol 2010;43:209-214.
25. Gosse P, Jan E, Coulon P, Cremer A, Papaioannou G, Yeim S. ECG detection of left ventricular hypertrophy: the simpler, the better?
J Hypertens 2012;30:990-996.
26. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings.
Am J Cardiol 1986;57:450-458.
27. Ferguson KJ, Cvoro V, MacLullich AMJ, Shenkin SD, Sandercock PAG, Sakka E, et al. Visual rating scales of white matter hyperintensities and atrophy: comparison of computed tomography and magnetic resonance imaging.
J Stroke Cerebrovasc Dis 2018;27:1815-1821.
28. Simoni M, Li L, Paul NL, Gruter BE, Schulz UG, Küker W, et al. Age- and sex-specific rates of leukoaraiosis in TIA and stroke patients: population-based study.
Neurology 2012;79:1215-1222.
29. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses.
Ottawa Hospital Research Institute http://www.ohri.ca/programs/clinical_epidemiology/oxford.Asp
. 2011. Accessed March 26, 2020.
30. McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcomes.
Am J Epidemiol 2003;157:940-943.
31. Hamling J, Lee P, Weitkunat R, Ambühl M. Facilitating metaanalyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category.
Stat Med 2008;27:954-970.
32. Polanin JR, Snilstveit B. Converting between effect sizes.
Campbell Syst Rev 2016;12:1-13.
33. DerSimonian R, Laird N. Meta-analysis in clinical trials.
Control Clin Trials 1986;7:177-188.
34. Paule RC, Mandel J. Consensus values, regressions, and weighting factors.
J Res Natl Inst Stand Technol 1989;94:197-203.
35. Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed responses.
Stat Med 2001;20:1771-1782.
36. Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate.
Stat Med 2003;22:2693-2710.
37. Sterne JAC. Meta-Analysis in Stata: An Updated Collection from the Stata Journal 1st ed. College Station, TX: Stata Press; 2009.
38. Cornell JE, Mulrow CD, Localio R, Stack CB, Meibohm AR, Guallar E, et al. Random-effects meta-analysis of inconsistent effects: a time for change.
Ann Intern Med 2014;160:267-270.
39. Sidik K, Jonkman JN. A note on the empirical Bayes heterogeneity variance estimator in meta-analysis.
Stat Med 2019;38:3804-3816.
40. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis.
Res Synth Methods 2016;7:55-79.
41. Röver C, Knapp G, Friede T. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies.
BMC Med Res Methodol 2015;15:99.
42. IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-SidikJonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method.
BMC Med Res Methodol 2014;14:25.
43. Jackson D, Law M, Rücker G, Schwarzer G. The HartungKnapp modification for random-effects meta-analysis: a useful refinement but are there any residual concerns? Version 2.
Stat Med 2017;36:3923-3934.
45. van Aert RCM, Jackson D. A new justification of the Hartung-Knapp method for random-effects meta-analysis based on weighted least squares regression.
Res Synth Methods 2019;10:515-527.
46. Jackson D, Bowden J, Baker R. How does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts?
J Stat Plan Inference 2010;140:961-970.
47. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses.
BMJ 2003;327:557-560.
48. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test.
BMJ 1997;315:629-634.
49. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis.
Biometrics 2000;56:455-463.
50. Bezerra DC, Sharrett AR, Matsushita K, Gottesman RF, Shibata D, Mosley TH Jr, et al. Risk factors for lacune subtypes in the Atherosclerosis Risk in Communities (ARIC) Study.
Neurology 2012;78:102-108.
51. Kohara K, Igase M, Yinong J, Fukuoka T, Maguchi M, Okura T, et al. Asymptomatic cerebrovascular damages in essential hypertension in the elderly.
Am J Hypertens 1997;10:829-835.
52. Ohira T, Shahar E, Chambless LE, Rosamond WD, Mosley TH Jr, Folsom AR. Risk factors for ischemic stroke subtypes: the Atherosclerosis Risk in Communities study.
Stroke 2006;37:2493-2498.
53. Butenaerts D, Chrzanowska-Wasko J, Slowik A, Dziedzic T. Left ventricular geometry and white matter lesions in ischemic stroke patients.
Blood Press 2016;25:149-154.
54. Cermakova P, Muller M, Armstrong AC, Religa D, Bryan RN, Lima JAC, et al. Subclinical cardiac dysfunction and brain health in midlife: CARDIA (Coronary Artery Risk Development in Young Adults) brain magnetic resonance imaging substudy.
J Am Heart Assoc 2017;6:e006750.
55. Vedala K, Nagabandi AK, Looney S, Bruno A. Factors associated with leukoaraiosis severity in acute stroke patients.
J Stroke Cerebrovasc Dis 2019;28:1897-1901.
56. Das RR, Seshadri S, Beiser AS, Kelly-Hayes M, Au R, Himali JJ, et al. Prevalence and correlates of silent cerebral infarcts in the Framingham offspring study.
Stroke 2008;39:2929-2935.
57. Davis BR, Vogt T, Frost PH, Burlando A, Cohen J, Wilson A, et al. Risk factors for stroke and type of stroke in persons with isolated systolic hypertension. Systolic Hypertension in the Elderly Program Cooperative Research Group.
Stroke 1998;29:1333-1340.
58. Ferreira JP, Kearney Schwartz A, Watfa G, Zohra L, Felblinger J, Boivin JM, et al. Memory alterations and white matter hyperintensities in elderly patients with hypertension: the ADELAHYDE-2 study.
J Am Med Dir Assoc 2017;18:451.
59. Fox ER, Taylor HA Jr, Benjamin EJ, Ding J, Liebson PR, Arnett D, et al. Left ventricular mass indexed to height and prevalent MRI cerebrovascular disease in an African American cohort: the Atherosclerotic Risk in Communities study.
Stroke 2005;36:546-550.
60. Görner A, Lemmens R, Schrooten M, Thijs V. is leukoaraiosis on CT an accurate surrogate marker for the presence of microbleeds in acute stroke patients?
J Neurol 2007;254:284-289.
61. Haring B, Omidpanah A, Suchy-Dicey AM, Best LG, Verney SP, Shibata DK, et al. Left ventricular mass, brain magnetic resonance imaging, and cognitive performance: results from the strong heart study.
Hypertension 2017;70:964-971.
62. Hénon H, Godefroy O, Lucas C, Pruvo JP, Leys D. Risk factors and leukoaraiosis in stroke patients.
Acta Neurol Scand 1996;94:137-144.
63. Henskens LH, van Oostenbrugge RJ, Kroon AA, Hofman PA, Lodder J, de Leeuw PW. Detection of silent cerebrovascular disease refines risk stratification of hypertensive patients.
J Hypertens 2009;27:846-853.
64. Hirose T, Hashimoto M, Totsune K, Metoki H, Hara A, Satoh M, et al. Association of (pro)renin receptor gene polymorphisms with lacunar infarction and left ventricular hypertrophy in Japanese women: the Ohasama study.
Hypertens Res 2011;34:530-535.
65. Ikeda T, Gomi T, Kobayashi S, Tsuchiya H. Role of hypertension in asymptomatic cerebral lacunae in the elderly.
Hypertension 1994;23:I259-I262.
66. Jeerakathil T, Wolf PA, Beiser A, Massaro J, Seshadri S, D’Agostino RB, et al. Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study.
Stroke 2004;35:1857-1861.
67. Kawamoto A, Shimada K, Matsubayashi K, Nishinaga M, Kimura S, Ozawa T. Factors associated with silent multiple lacunar lesions on magnetic resonance imaging in asymptomatic elderly hypertensive patients.
Clin Exp Pharmacol Physiol 1991;18:605-610.
68. Kohara K, Zhao B, Jiang Y, Takata Y, Fukuoka T, Igase M, et al. Relation of left ventricular hypertrophy and geometry to asymptomatic cerebrovascular damage in essential hypertension.
Am J Cardiol 1999;83:367-370.
69. Lee SH, Park JM, Kwon SJ, Kim H, Kim YH, Roh JK, et al. Left ventricular hypertrophy is associated with cerebral microbleeds in hypertensive patients.
Neurology 2004;63:16-21.
70. Lee WJ, Jung KH, Ryu YJ, Kim JM, Lee ST, Chu K, et al. Association of cardiac hemodynamic factors with severity of white matter hyperintensities in chronic valvular heart disease.
JAMA Neurol 2018;75:80-87.
71. Longstreth WT Jr, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study.
Stroke 1996;27:1274-1282.
72. Martinez-Vea A, Salvadó E, Bardají A, Gutierrez C, Ramos A, García C, et al. Silent cerebral white matter lesions and their relationship with vascular risk factors in middle-aged predialysis patients with CKD.
Am J Kidney Dis 2006;47:241-250.
73. Mounier-Vehier F, Leys D, Rondepierre P, Godefroy O, Pruvo JP. Silent infarcts in patients with ischemic stroke are related to age and size of the left atrium.
Stroke 1993;24:1347-1351.
74. Pirinen J, Eranti A, Knekt P, Lehto M, Martinez-Majander N, Aro AL, et al. ECG markers associated with ischemic stroke at young age: a case-control study.
Ann Med 2017;49:562-568.
75. Ryu WS, Woo SH, Schellingerhout D, Chung MK, Kim CK, Jang MU, et al. Grading and interpretation of white matter hyperintensities using statistical maps.
Stroke 2014;45:3567-3575.
76. Selvetella G, Notte A, Maffei A, Calistri V, Scamardella V, Frati G, et al. Left ventricular hypertrophy is associated with asymptomatic cerebral damage in hypertensive patients.
Stroke 2003;34:1766-1770.
77. Shimada K, Kawamoto A, Matsubayashi K, Ozawa T. Silent cerebrovascular disease in the elderly: correlation with ambulatory pressure.
Hypertension 1990;16:692-699.
78. Sierra C, de la Sierra A, Paré JC, Gómez-Angelats E, Coca A. Correlation between silent cerebral white matter lesions and left ventricular mass and geometry in essential hypertension.
Am J Hypertens 2002;15:507-512.
79. Tanizaki Y, Kiyohara Y, Kato I, Iwamoto H, Nakayama K, Shinohara N, et al. Incidence and risk factors for subtypes of cerebral infarction in a general population: the Hisayama study.
Stroke 2000;31:2616-2622.
80. van der Veen PH, Geerlings MI, Visseren FL, Nathoe HM, Mali WP, van der Graaf Y, et al. Hypertensive target organ damage and longitudinal changes in brain structure and function: the second manifestations of arterial disease-magnetic resonance study.
Hypertension 2015;66:1152-1158.
81. Ghali JK, Liao Y, Cooper RS. Influence of left ventricular geometric patterns on prognosis in patients with or without coronary artery disease.
J Am Coll Cardiol 1998;31:1635-1640.
82. Palmieri V, Wachtell K, Gerdts E, Bella JN, Papademetriou V, Tuxen C, et al. Left ventricular function and hemodynamic features of inappropriate left ventricular hypertrophy in patients with systemic hypertension: the LIFE study.
Am Heart J 2001;141:784-791.
83. Shimizu A, Sakurai T, Mitsui T, Miyagi M, Nomoto K, Kokubo M, et al. Left ventricular diastolic dysfunction is associated with cerebral white matter lesions (leukoaraiosis) in elderly patients without ischemic heart disease and stroke.
Geriatr Gerontol Int 2014;14 Suppl 2:71-76.
84. Vogels RL, van der Flier WM, van Harten B, Gouw AA, Scheltens P, Schroeder-Tanka JM, et al. Brain magnetic resonance imaging abnormalities in patients with heart failure.
Eur J Heart Fail 2007;9:1003-1009.
86. Di Tullio MR, Zwas DR, Sacco RL, Sciacca RR, Homma S. Left ventricular mass and geometry and the risk of ischemic stroke.
Stroke 2003;34:2380-2384.
87. Arnett DK, Hong Y, Bella JN, Oberman A, Kitzman DW, Hopkins PN, et al. Sibling correlation of left ventricular mass and geometry in hypertensive African Americans and whites: the HyperGEN study. Hypertension Genetic Epidemiology Network.
Am J Hypertens 2001;14:1226-1230.
88. Schunkert H, Bröckel U, Hengstenberg C, Luchner A, Muscholl MW, Kurzidim K, et al. Familial predisposition of left ventricular hypertrophy.
J Am Coll Cardiol 1999;33:1685-1691.
89. Norby FL, Chen LY, Soliman EZ, Gottesman RF, Mosley TH, Alonso A. Association of left ventricular hypertrophy with cognitive decline and dementia risk over 20 years: the Atherosclerosis Risk In Communities-Neurocognitive Study (ARIC-NCS).
Am Heart J 2018;204:58-67.
90. Moazzami K, Ostovaneh MR, Ambale Venkatesh B, Habibi M, Yoneyama K, Wu C, et al. Left ventricular hypertrophy and remodeling and risk of cognitive impairment and dementia: MESA (Multi-Ethnic Study of Atherosclerosis).
Hypertension 2018;71:429-436.
91. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension.
Eur Heart J 2018;39:3021-3104.
92. Pierdomenico SD, Cuccurullo F. Risk reduction after regression of echocardiographic left ventricular hypertrophy in hypertension: a meta-analysis.
Am J Hypertens 2010;23:876-881.
93. Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events.
JAMA 2004;292:2343-2349.