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Background and Purpose We investigated the causal relationships between the gut microbiota 
(GM), stroke, and potential metabolite mediators using Mendelian randomization (MR).
Methods We leveraged the summary statistics of GM (n=18,340 in the MiBioGen consortium), blood 
metabolites (n=115,078 in the UK Biobank), and stroke (cases n=60,176 and controls n=1,310,725 
in the Global Biobank Meta-Analysis Initiative) from the largest genome-wide association studies to 
date. We performed bidirectional MR analyses to explore the causal relationships between the GM 
and stroke, and two mediation analyses, two-step MR and multivariable MR, to discover potential 
mediating metabolites.
Results Ten taxa were causally associated with stroke, and stroke led to changes in 27 taxa. In the 
two-step MR, Bifidobacteriales order, Bifidobacteriaceae family, Desulfovibrio genus, apolipoprotein 
A1 (ApoA1), phospholipids in high-density lipoprotein (HDL_PL), and the ratio of apolipoprotein B 
to ApoA1 (ApoB/ApoA1) were causally associated with stroke (all P<0.044). The causal associations 
between Bifidobacteriales order, Bifidobacteriaceae family and stroke were validated using the 
weighted median method in an independent cohort. The three GM taxa were all positively associated 
with ApoA1 and HDL_PL, whereas Desulfovibrio genus was negatively associated with ApoB/ApoA1 
(all P<0.010). Additionally, the causal associations between the three GM taxa and ApoA1 remained 
significant after correcting for the false discovery rate (all q-values <0.027). Multivariable MR 
showed that the associations between Bifidobacteriales order, Bifidobacteriaceae family and stroke 
were mediated by ApoA1 and HDL_PL, each accounting for 6.5% (P=0.028) and 4.6% (P=0.033); 
the association between Desulfovibrio genus and stroke was mediated by ApoA1, HDL_PL, and 
ApoB/ApoA1, with mediated proportions of 7.6% (P=0.019), 4.2% (P=0.035), and 9.1% (P=0.013), 
respectively.
Conclusion The current MR study provides evidence supporting the causal relationships between 
several specific GM taxa and stroke and potential mediating metabolites.
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Introduction

Stroke, one of the primary cardiovascular diseases, the second 
and third leading cause of death and disability worldwide, brings 
huge socioeconomic burdens.1,2 Gut microbiota (GM), an emerg-
ing environmental factor contributing to human physiology and 
pathology,3 plays a pivotal role in the progression and outcome 
of stroke.4 Mounting evidence suggests that stroke may lead to 
gut dysbiosis, whereas alterations in GM may determine stroke 
prognosis and recovery.5,6 However, previous observational and 
preclinical studies have yielded largely inconsistent findings. For 
example, observational studies have shown that Prevotella and 
Faecalibacterium genera, which are among the human core mi-
crobiota, decreased in patients with an acute ischemic stroke or 
a transient ischemic attack,7 while they were reported to increase 
in patients with stroke in another case-control study.8 An increase 
in Prevotella genus with a decrease in Faecalibacterium genus 
was found in monkey models with left middle cerebral artery oc-
clusion,9 nevertheless, in mouse models, undergrowth of these 
two taxa was found three days after middle cerebral artery oc-
clusion.10 The causal relationship between GM and stroke, and 
the mechanism behind this relationship, remains unclear.

Interestingly, clinical and animal studies have shown that GM 
may affect stroke by modulating the blood levels of some bio-
active metabolites, such as trimethylamine N-oxide and short-
chain fatty acids.11 Thus, we speculated that there might be causal 
associations between GM, metabolites, and stroke. Therefore, we 
sought to clarify these associations and identify potential me-
tabolites that could be used for early diagnosis and as clinical 
treatment targets.

Mendelian randomization (MR), using genetic variants as in-
strumental variables (IVs), is a widely accepted method to con-
trol potential confounding factors,12 which can avoid reverse cau-
sation bias and allow more robust causal inferences between 
exposure and clinical outcomes. Furthermore, increasing evi-
dence illustrates the value in using human genetic information 
of gut microbial features for clinical investigations,13 which en-
ables us to employ MR as a methodology to infer causal rela-
tionships between the GM and stroke. We performed a bidirec-
tional MR study and two mediation analyses using summary 
statistics from the largest and most up-to-date genome-wide 
association studies (GWAS) of the GM, blood metabolites, and 
stroke to dissect the associations between them.

Methods

Study design
Figure 1 illustrates the diagram of the study design and displays 

that the causal interpretation of MR estimates relies on three as-
sumptions.12 Specifically, the genetic variants used as IVs termed 
single nucleotide polymorphisms (SNPs) should (1) strongly pre-
dict the exposures, (2) only associate with the outcome via the 
exposures, and (3) not associated with any confounder of the ex-
posure-outcome association. The STROBE-MR (Strengthening 
the Reporting of Observational Studies in Epidemiology using 
Mendelian Randomization) checklist was completed for this ob-
servational study (Appendix 1).14

Data sources
Characteristics of corresponding GWAS data sources are de-
scribed in Supplementary Table 1A.15-17 Summary data of GM in 
the MiBioGen consortium (https://mibiogen.gcc.rug.nl) included 
18,340 participants of multiple ancestries from 24 cohorts, of 
which 78% were Europeans.15 An overview of the cohorts in 
MiBioGen are listed in Supplementary Table 1B. The MiBioGen 
consortium curated and analyzed genome-wide genotypes and 
the 16S fecal microbiome from participants. Only the taxa pres-
ent in more than 10% of samples were used to identify genetic 
loci that affected relative abundance (microbiome quantitative 
trait loci), resulting in a total of 211 taxa: 131 genera, 35 fami-
lies, 20 orders, 16 classes, and 9 phyla. Summary data of stroke 
in the Global Biobank Meta-analysis Initiative (GBMI) (https://
www.globalbiobankmeta.org/resources) included 1,370,901 par-
ticipants (60,176 cases and 1,310,725 controls) of multiple an-
cestries, of which 76% were Europeans.16 The GBMI is a collab-
orative network of 19 biobanks from four continents representing 
more than 2.1 million consented individuals with genetic data 
linked to electronic health records. Stroke was defined using co-
hort-specific criteria: the Phecode, International Classification 
of Diseases codes, physician diagnosis or adjudication, or any 
available electronic health records. The detailed information is 
provided in Supplementary Table 1C. Based on phenotype-defi-
nition guidelines, the predominant form of stroke in the GBMI 
is ischemic stroke. Summary data of plasma-based metabolites 
in the UK Biobank (https://gwas.mrcieu.ac.uk) included an un-
precedented sample size of up to 115,078 European participants.17 
The biomarkers span multiple metabolic pathways with proven 
relevance in the mechanisms of different diseases, including li-
poprotein lipids in 14 subclasses, fatty acids and fatty acid com-
positions, as well as various low-molecular-weight metabolites, 
such as amino acids, ketone bodies, and glycolysis metabolites 
quantified in molar concentration units. Summary data were ob-
tained from a GWAS of stroke in the UK Biobank (https://gwas.
mrcieu.ac.uk/datasets/ukb-b-8714/) as an independent valida-
tion cohort comprising 461,880 participants of European ances-
try (7,055 cases and 454,825 controls).

https://mibiogen.gcc.rug.nl
https://www.globalbiobankmeta.org/resources
https://www.globalbiobankmeta.org/resources
https://gwas.mrcieu.ac.uk
https://gwas.mrcieu.ac.uk/datasets/ukb-b-8714/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-8714/
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Data extraction
For MR, it is important for the genetic variants used are repre-
sentative of the microbiome features, thus we selected SNPs asso-
ciated with GM at a more suggestive P-value of less than 1×10-5, 
as used in previous MR studies.13,18 We selected SNPs associated 
with stroke and blood metabolites at conventional GWAS thresh-
olds (P<5×10-8). Independent SNPs were then clumped to a link-
age disequilibrium (LD) threshold of r2<0.001 at 1000 Genomes 
reference panel.19 However, when no shared SNPs were available 
between the exposure and outcome, proxies from the 1000 Ge-
nomes European reference panel (r2≥0.8) were added. We includ-
ed SNPs whose effect allele frequency was >0.01 and excluded 
SNPs whose F-statistic was <10 (a measure of the strength of 
these IVs) to avoid weak instrumental bias.20

Genetic analyses to elucidate causality
We first conducted bidirectional MR analyses to explore the 
causal relationship between the GM and stroke. The conventional 
MR approach inverse-variance-weighted (IVW) method was used 
for effect estimates, which was reported in beta (β) value with 
standard error for the continuous outcome and odds ratio (OR) 
with a 95% confidence interval (CI) for the binary outcome; P< 
0.05 were considered nominally significant. In brief, IVW meta-

analyzed SNP-specific Wald estimates (SNP outcome estimate 
divided by SNP exposure estimate) using random effects to ob-
tain a final estimate of the causal effect.21

To show the genetic correlation between GM and stroke, we 
performed bivariate linkage disequilibrium score regression (LDSC) 
using GWAS summary statistics.22 The bivariate LDSC method is 
based on the principle that genetic variants in LD are inherited 
together and are more likely to be associated with a trait or dis-
ease than non-LD variants. It estimates the genetic correlation 
between two traits by simultaneously regressing the LD score of 
each SNP against the effect size of the two traits.

Mediation analyses link “gut microbiota–blood 
metabolites–stroke”
We have utilized summary statistics of blood metabolites from 
115,078 participants in the UK Biobank, covering 249 plasma 
measurements of lipids, fatty acids, and small molecules such 
as amino acids, ketones, and glycolysis metabolites. To discover 
potential novel metabolites as mediators between the GM and 
stroke, we first excluded classical lipids and lipoproteins from this 
panel, including seven cholesterols, four total lipids, and four tri-
glycerides, since their relationships with the GM and roles in the 
development of ischemic stroke have been well discussed in pre-

Figure 1. Assumptions and design of the bidirectional and mediation Mendelian randomization (MR) analyses. Firstly, a two-sample bidirectional MR was 
performed to investigate the causal relationships between gut microbiota (exposure) and stroke (outcome). Secondly, 51 blood metabolites (mediator) were 
selected for subsequent mediation analyses. Finally, a two-step MR analysis was conducted to detect potential mediating metabolites (Step 1, the effect of 
gut microbiota on metabolites; Step 2, the effect of metabolites on stroke), followed by a validation analysis using multivariable MR. GBMI, Global Biobank 
Meta-analysis Initiative. The images for gut microbiota, blood metabolites, and stroke were adapted from emojipng.com under the terms of the Non-Com-
mercial Use License.
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vious studies.23-25 We further excluded metabolites that were ge-
netically highly related to, or subclasses of, the aforementioned 
classical lipids and lipoproteins, including four cholesteryl esters, 
four free cholesterol, 70 relative lipoprotein lipid concentrations, 
and 105 lipid concentrations and compositions measured in 14 li-
poproteins. We also conducted a bivariate LDSC analysis of these 
metabolites to evaluate their genetic correlations. The results re-
vealed high genetic correlations between lipid and lipoprotein 
metabolites. The inclusion of these highly genetically correlated 
metabolites in the mediation analysis deteriorates the detection 
power owing to excessive multi-correction tests. Thus, 51 met-
abolic biomarkers were kept in the final mediation analysis in-
cluding 18 fatty acids, 10 amino acids, 5 choline metabolites, 4 
ketone bodies, 4 glycolysis-related metabolites, 4 phospholipids, 
3 apolipoproteins, 2 fluid balance measures, and one inflamma-
tion measure.

We adopted two mediation approaches, two-step Mendelian 
randomization (TSMR)26 and multivariable Mendelian random-
ization (MVMR),27 to decompose the direct and indirect effects 
of the GM and blood metabolites on stroke. The TSMR assumes 
no interaction between exposure and mediator. In addition to 
the basic effect estimates of GM on stroke (β1) obtained from 
the univariate MR analyses, two more estimates were calculated: 
(1) the causal effect of the mediator (51 blood metabolites) on 
stroke (β2), and (2) the causal effect of the exposure (10 signifi-
cant taxa on stroke in primary MR analysis) on the mediator (α). 
All IVW results were corrected for multiple testing using the 
false discovery rate (FDR) method, and the FDR q-values are pro-
vided. We also validated the primary findings of the TSMR in an 
independent cohort from the UK Biobank.

Finally, we performed MVMR as another method to validate 
the roles of the metabolites uncovered in TSMR. In MVMR, the 
controlled direct effect of the exposure on the outcome is esti-
mated, which refers to the effect of metabolites on stroke ad-
justing for bacteria (β2*), and the effect of bacteria on stroke 
adjusting for metabolites (β1*) in our study.28 The indirect effect, 
which refers to the causal effect of GM on stroke via mediators, 
can then be estimated using the product of coefficients method 
(α×β2*). Thus, the proportion mediated could be calculated as 
“indirect effect/total effect” ([α×β2*]/β1).

Sensitivity analyses
Up to four MR methods (MR-Egger, weighted median, simple 
mode, and weighted mode) that make differing pleiotropy as-
sumptions have been used to generate effect estimates as sen-
sitivity analyses.29,30 We assessed horizontal pleiotropy using the 
MR-Egger method, which performs weighted linear regression 
with the intercept unconstrained.29 The intercept represents the 

average pleiotropic effect across the genetic variants (the aver-
age direct effect of a variant with the outcome). If the intercept 
differed from zero (MR-Egger intercept P-value <0.05), there was 
evidence of horizontal pleiotropy. We also assessed heteroge-
neity using Cochrane’s Q test (smaller P-values indicate higher 
heterogeneity and higher potential for directional pleiotropy) 
and used leave-one-out analyses to detect SNP outliers.

All MR analyses were conducted in R (version 4.1.2; R Foun-
dation for Statistical Computing, Vienna, Austria) using the 
“TwoSampleMR,” “tidyverse,” “ggplot2,” “purrr,” “data.table,” and 
“LDlinkR” packages.30 FDR q-values were estimated using the R 
package “p.adjust.”31 LDSC was based on LDSC software in Py-
thon (version 3.10.5; https://www.python.org/).22

Ethical approval and consent to participate
This study based on publicly available data. Individual studies 
within each GWAS received approval from the relevant Institu-
tional Review Board, and informed consent was obtained from 
the participants or a caregiver, legal guardian, or other proxy.

Results

Genetic instruments for exposures
The number of SNPs used as IVs ranged from 4 to 26 (median, 13) 
for the 211 GM taxa in the MiBioGen consortium, 7 to 72 (me-
dian, 35) for the 51 metabolites in the UK Biobank, and 13 for 
stroke in the GBMI (Supplementary Tables 2-4). The median F-
statistic was 21.0 (ranged from 14.6 to 88.4) for GM and 52.2 
(ranged from 23.8 to 16,413.1) for metabolites; an F-statistic >10 
is considered sufficiently informative for MR analyses.

Genetic causality and correlation between gut 
microbiota and stroke
When evaluating the causal effects of GM on stroke, one order, 
one family, and six genera were negatively associated with stroke, 
whereas two genera were positively associated with stroke us-
ing the IVW method (Figure 2A and Supplementary Table 5). In 
these significant taxa, the Bifidobacteriales order and Bifidobac-
teriaceae family belonged to the Actinobacteria phylum, Desul-
fovibrio genus belonged to the Proteobacteria phylum, and the 
other seven taxa belonged to the Firmicutes phylum, among 
which Blautia genus demonstrated the most potent effect on 
the risk of stroke (OR 1.151, 95% CI, 1.057–1.254; P=0.001).

When evaluating the causal effects of stroke on the GM, the 
relative abundance of most of the significant taxa decreased 
after stroke, including four phyla, four classes, four orders, five 
families, and seven genera, whereas only three significant gen-
era increased after stroke (Figure 2B and Supplementary Table 6). 
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Figure 2. Mendelian randomization analyses show causal effects between gut microbiota and stroke. (A) The causal effect of gut microbiota on stroke. (B) The 
causal effect of stroke on gut microbiota. The dots colored in red and green indicate positive and negative odds ratios respectively from the inverse-variance-
weighted analysis (truncated at P-value <0.05). CI indicates confidence intervals and prefix “p_/c_/o_/f_/g_” represents phylum/class/order/family/genus, re-
spectively. Taxonomy with the same background color belongs to the same phylum.

A

B



Vol. 25 / No. 3 / September 2023

https://doi.org/10.5853/jos.2023.00381 https://j-stroke.org  355 

The reduced taxa belonging to the same phylum demonstrated 
similar effect sizes, among which Lentisphaerae phylum was the 
most affected by stroke (OR 0.623, 95% CI, 0.452–0.860; P= 
0.004). Furthermore, these results were deemed reliable without 
pleiotropy through a sensitivity analysis (Supplementary Table 7).

Bivariate LDSC analysis identified a strong negative genetic corre-
lation between two genera and stroke: ChristensenellaceaeR.7group 
genus (Rg=-0.4074, P=0.031) and LachnospiraceaeFCS020group 
genus (Rg=-0.3576, P=0.046) (Supplementary Table 8).

Mediation analyses of potential blood metabolites 
In the TSMR (Figure 3), only four blood metabolites were caus-

ally associated with stroke (Table 1). Apolipoprotein A1 (ApoA1; 
OR 0.906, 95% CI 0.857 to 0.957, P=0.0004) and phospholipids 
in high-density lipoproteins (HDL_PL; OR 0.931, 95% CI 0.882 
to 0.984, P=0.011) were negatively associated with stroke, while 
the ratios of apolipoprotein B to ApoA1 (ApoB/ApoA1; OR 1.109, 
95% CI 1.033 to 1.190, P=0.004) and tyrosine (OR 1.080, 95% CI 
1.003 to 1.162, P=0.041) were positively associated with stroke. 
The IVW results for ApoA1 survived multiple testing corrections 
(FDR q-value=0.022). Among the 10 taxa that were causally as-
sociated with stroke, four were significantly associated with the 
above four metabolites (Table 2). Furthermore, all IVW results 
for associations between the four GM taxa and the four metab-

Table 1. Mendelian randomization analyses of the causal effects between blood metabolites and stroke

Exposure Method Number of SNP Odds ratio (95% CI) P Q-statistics Ph Egger intercept Pintercept

ApoA1 IVW 72 0.906 (0.857, 0.957) 0.0004 150.037 1.35E-07

MR Egger 72 0.949 (0.863, 1.044) 0.287 147.135 2.03E-07 -0.003 0.244

HDL_PL IVW 61 0.931 (0.882, 0.984) 0.011 119.637 7.57E-06

MR Egger 61 0.924 (0.842, 1.015) 0.103 119.553 5.34E-06 0.0006 0.839

ApoB/ApoA1 IVW 54 1.109 (1.033, 1.190) 0.004 94.120 4.34E-04

MR Egger 54 1.150 (1.003, 1.319) 0.050 93.430 3.70E-04 -0.002 0.538

Tyrosine IVW 31 1.080 (1.003, 1.162) 0.041 32.590 0.341

MR Egger 31 1.104 (0.970, 1.257) 0.146 32.397 0.303 -0.001 0.681

Odds ratios, 95% CI, and P-values were obtained from Mendelian randomization analysis. The heterogeneity test in the IVW method was performed using Co-
chran’s Q statistic.
SNP, single nucleotide polymorphism; CI, confidence interval; Ph, P-value for heterogeneity; Pintercept, P-value for the intercept of the MR-Egger regression; 
ApoA1, apolipoprotein A1; IVW, inverse-variance-weighted; MR, Mendelian randomization; HDL_PL, phospholipids in high-density lipoproteins; ApoB/ApoA1, 
ratio of apolipoprotein B to apolipoprotein A1.

Figure 3. Mendelian randomization analyses show causal effects of blood metabolites on gut microbiota and stroke. The diagram displays the mediation 
mode of “gut microbiota-blood metabolites-stroke” in two-step Mendelian randomization. Beta values (β) indicate the causal effect estimates using the in-
verse-variance-weighted method (truncated at P<0.05). Characters colored in red and green signify positive and negative associations, respectively. HDL_PL, 
phospholipids in high-density lipoprotein; ApoA1, apolipoprotein A1; ApoB/ApoA1, the ratio of apolipoprotein B to apolipoprotein A1.
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olites except ApoB/ApoA1 survived multiple testing corrections 
(FDR q-value <0.027). The FDR q-value for association between 
Desulfovibrio genus and ApoB/ApoA1 is 0.039 (Supplementary 
Table 9). Desulfovibrio genus, a protective taxon against stroke 
(OR 0.932, 95% CI 0.875–0.992, P=0.028), increased ApoA1 and 
HDL_PL, and decreased ApoB/ApoA1. Bifidobacteriales order and 
Bifidobacteriaceae family also exerted protective effects against 
stroke (both ORs 0.938, 95% CI, 0.882–0.998; P=0.044) by up-
regulating ApoA1 and HDL_PL and downregulating tyrosine. 
Blautia genus exerts detrimental effects on stroke by increasing 
tyrosine levels. The Q-statistics of both the IVW test and MR-
Egger regression indicated no notable heterogeneity (P-values 
between 0.135 and 0.892). The P-values of the MR-Egger inter-
cepts were between 0.062 and 0.933, suggesting minimal hori-
zontal pleiotropy (Table 2). The results of the other sensitivity 
analyses are presented in Supplementary Tables 9 and 10, and 
the pleiotropy test is presented in Supplementary Table 7. The 
bivariate LDSC results for the metabolites are provided in Sup-
plementary Table 11. To validate the main findings of our present 
study, we conducted a two-sample MR analysis of significant GM 
taxa after FDR correction (Bifidobacteriales order, Bifidobacte-
riaceae family, and Desulfovibrio genus) using summary statistics 
of stroke GWAS in an independent cohort from the UK Biobank. 
The results are shown in Supplementary Table 12. Although the 
IVW method did not indicate the significance of any taxon, the 
weighted median method provided evidence supporting the ef-

fects of Bifidobacteriales order and Bifidobacteriaceae family 
on stroke. Moreover, all three GM taxa demonstrated consistent 
protective effects against stroke, confirming and strengthening 
the credibility of our findings.

We performed MVMR to validate the mediating effects of 
blood metabolites uncovered in TSMR. We calculated the indirect 
effect and proportion mediated by these metabolites, and found 
that the roles of ApoA1, HDL_PL, and ApoB/ApoA1 remained sig-
nificant after adjusting for GM (Table 3). Overall, we observed 
indirect effects of ApoA1 and HDL_PL in associations between 
Bifidobacteriales order, Bifidobacteriaceae family and stroke, 
with a mediated proportion of 6.5% (P=0.028) and 4.6% (P= 
0.033); and ApoA1, HDL_PL and ApoB/ApoA1 in association be-
tween Desulfovibrio genus and stroke with a mediated propor-
tion of 7.6% (P=0.019), 4.2% (P=0.035), and 9.1% (P=0.013), re-
spectively. The effect of tyrosine was insignificant after adjusting 
for the GM.

Discussion

In the present large-scale MR study, 10 GM taxa were causally 
associated with stroke, and stroke affected the relative abun-
dances of 27 taxa. Regarding a possible underlying mechanism, 
we uncovered three blood metabolites associated with the three 
GM taxa and stroke using TSMR and MVMR as mediation anal-
yses. We suggest that Bifidobacteriales order, Bifidobacteriaceae 

Table 2. Mendelian randomization analyses of the causal effects between gut microbiota and blood metabolites

Mediator Exposure Method Number of SNP Beta±SE P Q-statistics Ph Egger intercept Pintercept

ApoA1 o_Bifidobacteriales/
f_Bifidobacteriaceae

IVW 18 0.046±0.016 0.003 12.358 0.778

MR Egger 18 0.113±0.060 0.079 11.043 0.807 -0.004 0.268

g_Desulfovibrio IVW 11 0.049±0.017 0.004 10.924 0.363

MR Egger 11 0.020±0.052 0.712 10.504 0.311 0.003 0.563

HDL_PL o_Bifidobacteriales/
f_Bifidobacteriaceae

IVW 18 0.045±0.016 0.004 11.669 0.820

MR Egger 18 0.105±0.059 0.059 10.556 0.836 -0.004 0.307

g_Desulfovibrio IVW 11 0.046±0.017 0.006 10.817 0.372

MR Egger 11 0.008±0.051 0.880 10.100 0.342 0.004 0.445

ApoB/ApoA1 g_Desulfovibrio IVW 11 -0.045±0.018 0.010 7.452 0.682

MR Egger 11 -0.041±0.052 0.449 7.445 0.591 -0.0004 0.933

Tyrosine o_Bifidobacteriales/
f_Bifidobacteriaceae

IVW 18 -0.056±0.020 0.006 23.441 0.135

MR Egger 18 -0.193±0.071 0.015 18.741 0.282 0.010 0.062

g_Blautia IVW 13 0.064±0.020 0.002 8.628 0.734

MR Egger 13 -0.002±0.044 0.959 5.706 0.892 0.006 0.115

Beta, standard errors (SE), and P-values were obtained from the Mendelian randomization analysis. The heterogeneity test in the IVW method was performed 
using Cochran’s Q statistic. The prefix “o_/f_/g_” represents order/family/genus respectively.
SNP, single nucleotide polymorphism; Ph, P-value for heterogeneity; Pintercept, P-value for the intercept of the MR-Egger regression; ApoA1, apolipoprotein A1; 
IVW, inverse-variance-weighted; MR, Mendelian randomization; HDL_PL, phospholipids in high-density lipoproteins; ApoB/ApoA1, ratio of apolipoprotein B to 
apolipoprotein A1.
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family, and Desulfovibrio genus exert their protective effects 
against stroke by increasing ApoA1.

Blautia genus has a positive causal effect on stroke and dem-
onstrated the most potent effect in our study. A previous clini-
cal study also found that the Blautia genus increased significantly 
in acute ischemic stroke and transient ischemic attack groups.32 
Desulfovibrio genus was negatively associated with stroke in our 
results, and one study which analyzed data from the Guangdong 
Gut Microbiome Project indirectly supported this association.33 
In this large-scale cohort study, Desulfovibrio genus was posi-
tively correlated with beneficial genera (Coprococcus, Rumino-
coccus, Akkermansia, and Faecalibacterium). It is worth notic-
ing that Coprococcus1 genus and Ruminococcusgauvreauiigroup 
genus were negatively correlated with stroke in our results. Thus, 
Desulfovibrio genus may contribute to host health and the pre-
vention of related diseases by co-occurring with other benefi-
cial genera. Our findings also demonstrate that Bifidobacteriales 
order and Bifidobacteriaceae family are protective against stroke. 
Bifidobacterium genus is well known to have beneficial health 
effects, and several members are included in probiotics.34 One 
study on Finnish men displayed that intake of fermented dairy 
products, which contain lactic acid bacteria such as Bifidobac-
teria and their primary metabolites (lactic acid), was inversely 
associated with the risk of coronary heart disease.35 However, 
Butyricicoccus genus, a risk factor for stroke in our findings, was 
decreased in cerebral infarction patients, but the results were 
not convincing in this study considering the small sample size 
(79 cases and 98 healthy controls).36

In our study, stroke causally decreased the most significant 
GM taxa, whereas only three genera (Bilophila, Barnesiella, and 
Lachnoclostridium) increased after stroke. These results were con-
sistent with most clinical studies.8,37,38 Bilophila genus was found 
to be significantly enriched in patients with acute cerebral in-
farction8 and Barnesiella genus and Lachnoclostridium genus 

were significantly elevated in subacute and chronic post-stroke 
patients, respectively.38 Some inconsistent results, decreased 
Lachnoclostridium genus in cerebral infarction patients,36 were 
noted in a previous study. However, a single-center case-control 
study with relatively few participants may have major limitations 
in determining the causal relationship between GM and stroke.

Our MR study provides genetic evidence that several specific 
blood metabolites mediate the causal effects of the GM on stroke. 
In contrast to well-known biomarkers (such as trimethylamine 
N-oxide and short-chain fatty acids), our findings highlight the 
causal roles of apolipoproteins and phospholipids in cholesterol. 
In our MR analysis, higher serum levels of ApoA1 and HDL_PL 
were associated with a lower risk of stroke, in contrast to ApoB/
ApoA1. A large international epidemiologic stroke study (INTER-
STROKE) demonstrated that high serum ApoB/ApoA1 was asso-
ciated with a higher risk of stroke.39 Coincidentally, another study 
found that a low concentration of HDL_PL (particularly lysophos-
pholipids) was present in acute coronary syndrome compared to 
stable coronary artery disease.40

Our mediation analyses also provided genetic evidence for an 
association between GM and blood metabolites. To the best of 
our knowledge, no prior research has directly linked the Bifido-
bacteriales order, Bifidobacteriaceae family, or Desulfovibrio genus 
with ApoA1. However, some studies have assessed the potential 
relationship between GM richness, or their components, and apo-
lipoproteins. For example, a large-scale observational study in Ko-
reans (n=1,141) identified a significant increase in GM richness 
in subjects with low levels of ApoA1, suggesting that ApoA1 de-
ficiency-driven microbial dysbiosis can contribute to inflamma-
tion or predispose to atherosclerosis development.41 Another pre-
vious study found that activation of toll-like receptor 5 (TLR5) 
by certain bacterial components (flagellin) can increase the pro-
duction of ApoA1 in the liver in mouse models.42 Stimulation of 
ApoA1 production was also seen in human ApoA1-transgenic 

Table 3. Multivariable Mendelian randomization analyses of the causal effects between gut microbiota, blood metabolites and stroke

Exposure Mediator Direct effect (β1*±SE) Direct effect (β2*±SE) Indirect effect (α×β2*±SE) P Proportion mediated (α×β2*/β1)

o_Bifidobacteriales/
f_Bifidobacteriaceae

ApoA1 -0.057±0.055 -0.090±0.034 -0.004±0.002 0.028 0.065

HDL_PL -0.044±0.048 -0.066±0.028 -0.003±0.002 0.033 0.046

Tyrosine -0.062±0.036 0.065±0.045 -0.004±0.003 0.111 0.057

g_Desulfovibrio ApoA1 0.004±0.049 -0.108±0.034 -0.005±0.003 0.019 0.076

HDL_PL -0.064±0.039 -0.065±0.028 -0.003±0.002 0.035 0.042

ApoB/ApoA1 -0.061±0.043 0.142±0.035 -0.006±0.003 0.013 0.091

g_Blautia Tyrosine 0.138±0.046 -0.595±0.459 -0.038±0.033 0.124 0.270

Beta (β), standard errors (SE), and P-values were obtained from multivariable Mendelian randomization analysis. β1* and β2* represent the controlled direct 
effects of each pair of bacteria and metabolite on stroke after adjusting for each other. α is the causal effect of exposure on mediator; indirect effect (α×β2*) 
is the effect of exposure on stroke via corresponding mediator; β1 is the total effect of exposure on stroke; proportion mediated is calculated as the “indirect 
effect/total effect.” The prefix “o_/f_/g_” represents order/family/genus respectively.
ApoA1, apolipoprotein A1; HDL_PL, phospholipids in high-density lipoproteins; ApoB/ApoA1, ratio of apolipoprotein B to apolipoprotein A1.
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mice treated with oral flagellin. In brief, their findings suggest 
that commensal flagellated bacteria in the gut can modulate liver 
function and facilitate ApoA1 production through TLR5-mediat-
ed pathways. These findings, along with the results of our study, 
provide insights into the causal relationship between the GM and 
the regulation of lipid metabolism, particularly regarding distinct 
classes of apolipoproteins. Such information highlights the po-
tential of targeted modulation of the GM as a strategy for im-
proving cardiovascular health and warrants further exploration 
of the interplay between the GM, stroke, and apolipoprotein reg-
ulation in future studies.

The strengths of our study include utilization of the largest and 
latest GWASs of summary data for GM and stroke; the sample 
size of blood metabolites was over 110,000 participants,15-17 
which guaranteed the statistical power of the findings. Stroke in 
GBMI included individuals of multi-ancestries from Biobank Ja-
pan (22,664 cases and 152,022 controls), FinnGen (18,661 cases 
and 162,201 controls), UK Biobank (1,958 cases and 407,633 
controls), and other large consortiums (BioMe, BioVU, Estonian 
Biobank, Trøndelag Health Study, and Mass General Brigham 
Biobank) from all over the world. GM in MiBioGen also includ-
ed individuals from the Netherlands (3,782 samples), Germany 
(3,582 samples, which covered three out of five cohorts in an-
other single-country GWAS of microbial traits),43 Denmark (2,776 
samples), Belgium (2,259 samples in the Flemish Gut Flora Proj-
ect), and other consortiums around the world. Additionally, we 
used two methods (TSMR and MVMR) for mediation analyses, 
and both supported the roles of ApoA1, HDL_PL, and ApoB/ApoA1 
in the pathway of GM to stroke.

However, this study had several limitations. First, the charac-
terization of microbiome profiles in the MiBioGen consortium 
uses 16S ribosomal RNA gene sequencing, which only allows 
resolution from the genus to phylum. Metagenomic sequencing 
provides more detail on a specific species level. However, a pre-
vious MR study of the GM found that the P-values were some-
times more significant for higher taxonomic units, such as gen-
era or phyla, suggesting similar functions contributed by species.18 
Second, we reported the nominally significant GM taxa that 
were causally associated with stroke. Considering the complex 
interactions and interdependence among GM taxa44 and the 
exploratory perspective of the current study design, multiple cor-
rection tests conducted within the overall number of taxa may 
be excessive and inappropriate for interpreting the results. Hence, 
nominally significant causal associations with relatively high FDR 
cannot completely negate the possibility of a relationship be-
tween GM and stroke. In fact, several GM taxa with nominal sig-
nificance identified in our study have been supported by previous 
research findings.32-35 Notably, the causal associations of Bifi-

dobacteriales order and Bifidobacteriaceae family with stroke 
were statistically significant using both the IVW and weighted 
median methods in our study. More importantly, we validated 
their effects on stroke in an independent cohort and obtained 
consistent results, lending further support to our primary find-
ings. Third, whether our findings apply to specific ethnic groups 
needs to be ascertained, given that over 70% of the study pop-
ulation was of European ancestry; differences exist in lifestyle, 
host metabolism, and resident GM among humans worldwide. 
The unequal distribution of genetic variants across different eth-
nic or racial groups can lead to population stratification, which 
may bias the study results.45 From this perspective, the general-
izability of the findings to other ethnic or racial groups should 
be interpreted with caution. It is crucial for future studies to in-
corporate a more diverse population to improve the generalizabil-
ity of the results. Finally, MR assumes a linear relationship be-
tween exposure and outcome, but the relationship may be more 
complex in reality, involving nonlinear relationships and interac-
tions with other environmental and genetic factors.45 For exam-
ple, some genetic variants may have a stronger effect on the out-
come at higher or lower levels of exposure, or the effect of the 
exposure on the outcome may be mediated or moderated by 
other factors. Therefore, careful consideration of the potential 
nonlinear and interaction effects between the GM and stroke 
is warranted in future MR studies.

Conclusions

To our knowledge, this is the first study to comprehensively as-
sess the causal relationships between the GM, blood metabo-
lites, and stroke. These findings highlight the importance of elu-
cidating the underlying mechanisms between the GM and stroke. 
These results provide novel insights into microbiome-based ther-
apies and metabolite-targeted interventions for stroke.
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