1. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.
Stroke 2018;49:e46-e110.
2. Tsai CF, Thomas B, Sudlow CL. Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review.
Neurology 2013;81:264-272.
3. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct.
N Engl J Med 2018;378:11-21.
4. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging.
N Engl J Med 2018;378:708-718.
5. Lansberg MG, Bluhmki E, Thijs VN. Efficacy and safety of tissue plasminogen activator 3 to 4.5 hours after acute ischemic stroke: a metaanalysis.
Stroke 2009;40:2438-2441.
6. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation.
N Engl J Med 2009;361:1139-1151.
7. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function.
Circulation 2012;126:1110-1120.
8. Honig RE. Mass spectroscopy as an analytical tool.
Ann N Y Acad Sci 1966;137:262-283.
9. Issaq HJ, Abbott E, Veenstra TD. Utility of separation science in metabolomic studies.
J Sep Sci 2008;31:1936-1947.
10. Lindon JC, Nicholson JK. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics.
Annu Rev Anal Chem (Palo Alto Calif) 2008;1:45-69.
11. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry.
Anal Chem 2009;81:10038-10048.
12. Bain JR, Stevens RD, Wenner BR, Ilkayeva O, Muoio DM, Newgard CB. Metabolomics applied to diabetes research: moving from information to knowledge.
Diabetes 2009;58:2429-2443.
13. Want EJ, Nordström A, Morita H, Siuzdak G. From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics.
J Proteome Res 2007;6:459-468.
14. A J, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, et al. Extraction and GC/MS analysis of the human blood plasma metabolome.
Anal Chem 2005;77:8086-8094.
15. Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic: ischemic brain damage.
Ann Neurol 1986;19:105-111.
16. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection.
Prog Neurobiol 2014;115:157-188.
17. Fukuyama N, Takizawa S, Ishida H, Hoshiai K, Shinohara Y, Nakazawa H. Peroxynitrite formation in focal cerebral ischemia-reperfusion in rats occurs predominantly in the periinfarct region.
J Cereb Blood Flow Metab 1998;18:123-129.
18. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease.
Physiol Rev 2007;87:315-424.
19. Chamorro Á, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke.
Nat Rev Neurol 2012;8:401-410.
20. Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation.
Lancet Neurol 2016;15:869-881.
21. Liu M, Zhou K, Li H, Dong X, Tan G, Chai Y, et al. Potential of serum metabolites for diagnosing post-stroke cognitive impairment.
Mol Biosyst 2015;11:3287-3296.
22. Schousboe A. Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission.
Neurochem Res 2003;28:347-352.
23. Jung JY, Lee HS, Kang DG, Kim NS, Cha MH, Bang OS, et al. 1H-NMR-based metabolomics study of cerebral infarction.
Stroke 2011;42:1282-1288.
24. Ding X, Liu R, Li W, Ni H, Liu Y, Wu D, et al. A metabonomic investigation on the biochemical perturbation in post-stroke patients with depressive disorder (PSD).
Metab Brain Dis 2016;31:279-287.
25. Coster J, McCauley R, Hall J. Glutamine: metabolism and application in nutrition support.
Asia Pac J Clin Nutr 2004;13:25-31.
26. Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG. Free amino acid and dipeptide changes in the body fluids from Alzheimer’s disease subjects.
Amino Acids 2007;32:213-224.
27. Kagiyama T, Glushakov AV, Sumners C, Roose B, Dennis DM, Phillips MI, et al. Neuroprotective action of halogenated derivatives of L-phenylalanine.
Stroke 2004;35:1192-1196.
28. Gao J, Yang H, Chen J, Fang J, Chen C, Liang R, et al. Analysis of serum metabolites for the discovery of amino acid biomarkers and the effect of galangin on cerebral ischemia.
Mol Biosyst 2013;9:2311-2321.
29. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke.
Int J Stroke 2009;4:461-470.
30. Beckman JS. Oxidative damage and tyrosine nitration from peroxynitrite.
Chem Res Toxicol 1996;9:836-844.
31. Becker BF. Towards the physiological function of uric acid.
Free Radic Biol Med 1993;14:615-631.
32. Amaro S, Planas AM, Chamorro A. Uric acid administration in patients with acute stroke: a novel approach to neuroprotection.
Expert Rev Neurother 2008;8:259-270.
33. Aad G, Abbott B, Abdallah J, Abdelalim AA, Abdesselam A, Abdinov O, et al. Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC.
Phys Rev Lett 2010;105:161801.
34. Onetti Y, Dantas AP, Pérez B, Cugota R, Chamorro A, Planas AM, et al. Middle cerebral artery remodeling following transient brain ischemia is linked to early postischemic hyperemia: a target of uric acid treatment.
Am J Physiol Heart Circ Physiol 2015;308:H862-H874.
35. Kelly PJ, Morrow JD, Ning M, Koroshetz W, Lo EH, Terry E, et al. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study.
Stroke 2008;39:100-104.
36. Asahi M, Asahi K, Wang X, Lo EH. Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats.
J Cereb Blood Flow Metab 2000;20:452-457.
37. Jian Liu K, Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia.
Free Radic Biol Med 2005;39:71-80.
40. Prager B, Spampinato SF, Ransohoff RM. Sphingosine 1-phosphate signaling at the blood-brain barrier.
Trends Mol Med 2015;21:354-363.
41. Testai FD, Kilkus JP, Berdyshev E, Gorshkova I, Natarajan V, Dawson G. Multiple sphingolipid abnormalities following cerebral microendothelial hypoxia.
J Neurochem 2014;131:530-540.
42. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis.
JAMA 2002;288:2015-2022.
43. Jung J, Park M, Park HJ, Shim SB, Cho YH, Kim J, et al. 1H NMR-based metabolic profiling of naproxen-induced toxicity in rats.
Toxicol Lett 2011;200:1-7.
44. El Kossi MM, Zakhary MM. Oxidative stress in the context of acute cerebrovascular stroke.
Stroke 2000;31:1889-1892.
45. Zhang F, Slungaard A, Vercellotti GM, Iadecola C. Superoxide-dependent cerebrovascular effects of homocysteine.
Am J Physiol 1998;274:R1704-R1711.
46. Howard VJ, Sides EG, Newman GC, Cohen SN, Howard G, Malinow MR, et al. Changes in plasma homocyst(e)ine in the acute phase after stroke.
Stroke 2002;33:473-478.
47. Dayal S, Rodionov RN, Arning E, Bottiglieri T, Kimoto M, Murry DJ, et al. Tissue-specific downregulation of dimethylarginine dimethylaminohydrolase in hyperhomocysteinemia.
Am J Physiol Heart Circ Physiol 2008;295:H816-H825.
48. Sacco RL, Roberts JK, Jacobs BS. Homocysteine as a risk factor for ischemic stroke: an epidemiological story in evolution.
Neuroepidemiology 1998;17:167-173.
49. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease.
N Engl J Med 2006;354:1567-1577.
50. Jiang Z, Sun J, Liang Q, Cai Y, Li S, Huang Y, et al. A metabonomic approach applied to predict patients with cerebral infarction.
Talanta 2011;84:298-304.
51. Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database.
Proteomics 2005;5:3226-3245.
52. Mamatha SN, Nagaraja D, Philip M, Christopher R. Asymmetric dimethylarginine as a risk marker for early-onset ischemic stroke in Indian population.
Clin Chim Acta 2011;412:139-142.
53. Wang Y, Wang YG, Ma TF, Li M, Gu SL. Dynamic metabolites profile of cerebral ischemia/reperfusion revealed by (1)H NMR-based metabolomics contributes to potential biomarkers.
Int J Clin Exp Pathol 2014;7:4067-4075.
54. Whitfield JB. Gamma glutamyl transferase.
Crit Rev Clin Lab Sci 2001;38:263-355.
55. D’Ambrosio D, Gargiulo G, Della-Morte D, Gallucci F, Uomo G, Rundek T, et al. Gamma-glutamyltransferase predicts functional impairment in elderly adults after ischemic stroke.
J Am Geriatr Soc 2013;61:1040-1041.
56. Yang W, Kim CK, Kim DY, Jeong HG, Lee SH. Gamma-glutamyl transferase predicts future stroke: a Korean nationwide study.
Ann Neurol 2018;83:375-386.
57. Ruttmann E, Brant LJ, Concin H, Diem G, Rapp K, Ulmer H, et al. Gamma-glutamyltransferase as a risk factor for cardiovascular disease mortality: an epidemiological investigation in a cohort of 163,944 Austrian adults.
Circulation 2005;112:2130-2137.
58. Yu C, Kastin AJ, Ding Y, Pan W. Gamma glutamyl transpeptidase is a dynamic indicator of endothelial response to stroke.
Exp Neurol 2007;203:116-122.
59. Justicia C, Panés J, Solé S, Cervera A, Deulofeu R, Chamorro A, et al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats.
J Cereb Blood Flow Metab 2003;23:1430-1440.
60. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation.
Nat Rev Immunol 2013;13:159-175.
61. Pocock JM, Kettenmann H. Neurotransmitter receptors on microglia.
Trends Neurosci 2007;30:527-535.
62. Eltzschig HK, Eckle T. Ischemia and reperfusion: from mechanism to translation.
Nat Med 2011;17:1391-1401.
63. Urra X, Cervera A, Villamor N, Planas AM, Chamorro A. Harms and benefits of lymphocyte subpopulations in patients with acute stroke.
Neuroscience 2009;158:1174-1183.
64. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke.
Nat Med 2009;15:192-199.
65. Gold AB, Herrmann N, Swardfager W, Black SE, Aviv RI, Tennen G, et al. The relationship between indoleamine 2,3-dioxygenase activity and post-stroke cognitive impairment.
J Neuroinflammation 2011;8:17.
66. Smith EA, Macfarlane GT. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism.
J Appl Bacteriol 1996;81:288-302.
67. Wang L, Radu CG, Yang LV, Bentolila LA, Riedinger M, Witte ON. Lysophosphatidylcholine-induced surface redistribution regulates signaling of the murine G protein-coupled receptor G2A.
Mol Biol Cell 2005;16:2234-2247.
68. Sun H, Zhao J, Zhong D, Li G. Potential serum biomarkers and metabonomic profiling of serum in ischemic stroke patients using UPLC/Q-TOF MS/MS.
PLoS One 2017;12:e0189009.
69. Frisardi V, Panza F, Seripa D, Farooqui T, Farooqui AA. Glycerophospholipids and glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer’s disease pathology.
Prog Lipid Res 2011;50:313-330.
71. Kim YJ, Kim OY, Cho Y, Chung JH, Jung YS, Hwang GS, et al. Plasma phospholipid fatty acid composition in ischemic stroke: importance of docosahexaenoic acid in the risk for intracranial atherosclerotic stenosis.
Atherosclerosis 2012;225:418-424.
72. Fretts AM, Mozaffarian D, Siscovick DS, Sitlani C, Psaty BM, Rimm EB, et al. Plasma phospholipid and dietary α-linolenic acid, mortality, CHD and stroke: the Cardiovascular Health Study.
Br J Nutr 2014;112:1206-1213.
73. Jové M, Mauri-Capdevila G, Suárez I, Cambray S, Sanahuja J, Quílez A, et al. Metabolomics predicts stroke recurrence after transient ischemic attack.
Neurology 2015;84:36-45.
74. Ebert D, Haller RG, Walton ME. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy.
J Neurosci 2003;23:5928-5935.
75. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake.
Nature 2000;404:661-671.
76. Belgardt BF, Brüning JC. CNS leptin and insulin action in the control of energy homeostasis.
Ann N Y Acad Sci 2010;1212:97-113.
77. Yoshida Y, Niki E. Bio-markers of lipid peroxidation in vivo: hydroxyoctadecadienoic acid and hydroxycholesterol.
Biofactors 2006;27:195-202.
78. Capdevila JH, Falck JR, Imig JD. Roles of the cytochrome P450 arachidonic acid monooxygenases in the control of systemic blood pressure and experimental hypertension.
Kidney Int 2007;72:683-689.
79. Correction.
Circulation 2015;131:e535.
81. Floegel A, Kühn T, Sookthai D, Johnson T, Prehn C, Rolle-Kampczyk U, et al. Serum metabolites and risk of myocardial infarction and ischemic stroke: a targeted metabolomic approach in two German prospective cohorts.
Eur J Epidemiol 2018;33:55-66.
82. Lee Y, Khan A, Hong S, Jee SH, Park YH. A metabolomic study on high-risk stroke patients determines low levels of serum lysine metabolites: a retrospective cohort study.
Mol Biosyst 2017;13:1109-1120.
83. Romanos E, Planas AM, Amaro S, Chamorro A. Uric acid reduces brain damage and improves the benefits of rt-PA in a rat model of thromboembolic stroke.
J Cereb Blood Flow Metab 2007;27:14-20.
84. Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G, et al. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial.
Circulation 2015;132:1104-1112.
85. Qureshi MI, Vorkas PA, Coupland AP, Jenkins IH, Holmes E, Davies AH. Lessons from metabonomics on the neurobiology of stroke.
Neuroscientist 2017;23:374-382.